Architecture-Level Dependence Analysis
for Software Systems

Judith A. Stafford’ and Alexander L. Wolff

tSoftware Engineering Institute IDepartment of Computer Science
Carnegie Mellon University University of Colorado
Pittsburgh, PA 15213 USA Boulder, CO 80309 USA
jas@sei.cmu.edu alw@cs.colorado.edu

University of Colorado
Department of Computer Science
Technical Report CU-CS-913-00 December 2000

© 2000 Judith A. Stafford and Alexander L. Wolf

ABSTRACT

The emergence of formal software architecture description languages provides an oppor-
tunity to perform analyses at high levels of abstraction, as well as early in the develop-
ment process. Previous research has primarily focused on developing techniques such as
algebraic and transition-system analysis to detect component mismatches or global be-
havioral incorrectness. In this paper we motivate the utility and describe the challenges
in developing a different kind of analysis for use at the architectural level, namely depen-
dence analysis. Various kinds of dependence analyses have been used widely at the imple-
mentation level to aid program optimization, anomaly checking, program understanding,
testing, and debugging. However, the languages used for architectural description offer
quite different features than the languages for which traditional dependence analysis
techniques have been developed. We describe our initial approach to architecture-level
dependence analysis and illustrate that approach through a prototype tool we have built,
called Aladdin, to automatically perform the analysis.



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
DEC 2000 2. REPORT TYPE 00-00-2000 to 00-00-2000
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

rchitecture-L evel Dependence Analysisfor Software Systems £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Department of Computer Science,University of REPORT NUMBER
Colorado,Boulder,C0O,80309

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

The original document contains color images.

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 20
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



1 Introduction

Software architecture descriptions are intended as models of systems at high levels of abstraction [5,
27, 30, 37]. They capture information about a system’s components and how those components are
interconnected. Some software architecture descriptions also capture information about possible
states of components and about the component behaviors that involve component interaction;
states and behaviors internal to a component are typically not considered at the architectural level.
Formal notations for software architecture description, often referred to as architecture description
languages (ADLs), allow one to reason about properties of software systems at correspondingly high
levels of abstraction. The analysis techniques that have been developed for these languages have,
in general, focused primarily on correctness properties, such as liveness and safety [2, 17, 22, 25].

But there are many other kinds of questions in addition to correctness that one might want to
ask at an architectural level for purposes as varied as localizing faults, determining the impact of
changes, minimizing regression tests, reengineering a system, reusing components, and managing a
developer’s workspace. Here we list a small number of examples.

1. Are there any components of the system that are never needed by any other components of
the system?

2. If this component is to be reused in another system, which other components of the system
are also required?

3. Which components of the system contribute to this piece of functionality?
4. What are the potential effects of dynamically replacing this component?

5. If this component is communicating with other components through a shared repository, with
what other components could it be communicating?

6. If the source specification for a component is checked out into a workspace for modification,
which other source specifications should also be checked out into that workspace?

7. If a change is made to this component, what other components might be affected?

8. If a change is made to this component, what is the minimal set of test cases that must be
rerun?

9. If a failure of the system occurs, what is the minimal set of components of the system that
must be inspected during the debugging process?

These questions share the common theme of identifying the components of a system that either
affect or are affected by a particular component in some way. In fact, these kinds of questions
are similar to those currently asked at the implementation level and answered through a technique
known as dependence analysis applied to program code [1, 3, 10, 11, 16, 24, 26, 28, 29, 38]. It
seems reasonable, therefore, to apply a similar technique at the architectural level, either because
the program code may not exist at the time the question is being asked or because answering the
question at the architectural level is more tractable than at the implementation level [36].

The traditional view of dependence analysis, formulated in the context of imperative imple-
mentation languages, is based on control and data flow relationships associated with functions
and variables. In particular, control and data dependencies are identified by examining the flow of
control through a program as well as the locations of definitions and uses of the program’s variables.



The challenge in applying dependence analysis to architectural descriptions is to recast control
and data flow relationships in terms of abstract components and their interactions. Although there
is no commonly accepted and precise definition of what constitutes a component, the software
architecture community is coming to consensus that components should be modeled as loosely
coupled, nondeterministic, concurrent processes that communicate and synchronize through event
interactions. Rapide [20] and Wright [2] are two ADLs representative of this approach. In both these
languages, components have ports, each one of which “defines a logical point of interaction between
the component and its environment” [2], where that interaction is either the receipt of some stimulus
or the generation of some response modeled uniformly as events. The interaction behavior of the
components is specified by modeling the possible sequences of stimulation and response events. In
Rapide this is done by giving a partially ordered event set (called a poset), while in Wright this
is done through a variant of CSP [14]. In any case, to identify dependencies among components,
we must use the behaviors to identify the control and data relationships among communication
ports. This abstract view of component interaction is quite different from the traditional notion of
imperative program behavior, thus requiring a reformulation of the dependence analysis technique.

In this paper we motivate the utility and describe the challenges in developing a dependence
analysis technique for use with ADLs. We describe our initial approach to architecture-level depen-
dence analysis and illustrate that approach through a prototype tool we have built, called Aladdin,
to automatically perform the analysis. We conclude by suggesting promising avenues for future
research.

2 Architectures and Dependencies

In this section we begin by introducing the basic terminology of architectural description used in this
paper. We then provide a brief overview of the Rapide architecture description language [20] as an
illustration of architecture-level behavioral specification. Following this overview we introduce the
conceptual foundations for architecture-level dependence analysis and argue why the specification
of behavior in modern-day ADLs makes the development of dependence analysis techniques a
challenge.

2.1 Terminology

Informally, an architecture is a set of components and the interactions among them.! Figure 1

provides a graphical depiction of the most basic structural elements of an architectural description.
The following list gives fairly common definitions for these elements, as well as several other related
terms that we use in this paper:

e component—a unit of a system that plays some well-defined functional role and having an
interface through which it interacts with other components;

e port—a logical point of interaction between a component and its environment;
e in port—a port through which a component receives stimuli from its environment;

e out port—a port through which a component generates stimuli, possibly in response to some
stimuli from its environment;

!Some definitions of architecture include a first-class notion of connectors as well as components [2, 27]. For the
purposes of this paper, we do not make that distinction.
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Figure 1: Architectural Terms.

e intercomponent connection—a directed relationship between an out port of one component
and an in port of a different component;

e intracomponent pathway—a directed relationship between an in port and an out port of the
same component;

e cvent—the change in the behavioral state of a component, including the generation or receipt
of a stimulus;

e system—a, set of interacting components.

For simplicity of presentation, we do not consider hierarchical relationships among components
(i.e., a notion of subcomponent) in this paper.

If P, is an out port of component C} and P, is an in port of component C,, then an intercom-
ponent connection from P, to P, indicates the ability for an event associated with P, to directly
stimulate an event associated with P,. If P; and P; are two ports of component C, then an intra-
component pathway from P; to P; indicates the ability for an event associated with P; to directly
or indirectly stimulate an event associated with port P; as specified by the interaction behavior
of C'. This interaction behavior of C' is meant to capture the way in which it interacts with its
environment and not with how it carries out its functional role.

2.2 Overview of Rapide

Rapide is a powerful language that represents well the sophistication of modern-day ADLs. For
purposes of this paper, we present only a brief overview of the language, and restrict ourselves
to the features used in a simple example, the familiar “gas station” problem,? which is shown in
Figure 2 and which we discuss in detail in Section 3.

Components are defined in terms of their interfaces. Three types of components are described
in Figure 2: a pump, a customer, and an operator. Interfaces are structured into separate sections
that specify different aspects of the component’s behavioral interaction with other components.
Two sections are of relevance here. An action section contains the declaration of in and out

It could be argued that the gas station problem is not representative of software architecture specifications,
although it is widely used in the architecture literature [21, 25]. It has the advantage of being well known and
compact, and does in fact exhibit features that would appear in a “real” architecture specification. In general, there
appears to be a dearth of good architecture specification examples, both large and small.



type Dollars is integer; -- enum O, 1, 2, 3 end enum;
type Gallons is integer; -- enum O, 1, 2, 3 end enum;

type Pump is interface

action in O0n(), 0ff(), Activate(Cost : Dollars);
out Report(Amount : Gallons, Cost : Dollars);

behavior

Free : var Boolean := True;
Reading, Limit : var Dollars := 0;
action In_Use(), Done();
begin
(?X : Dollars)(On ~ Activate(?X)) where $Free ||> Free
In Use ||> Reading := $Limit; Done;;

0ff or Done ||> Free := True; Report($Reading);;
end Pump;

type Customer is interface
action in Okay(), Change(Cost : Dollars);

:= False; Limit

out Pre Pay(Cost : Dollars)Okay(), Turn On(), Walk(), Turn 0ff();

behavior
D : Dollars is 10;
begin
start ||> Pre_Pay(D);;
Okay |1> Walk;;
Walk ||> Turn_On;;
end Customer;

type Operator is interface
action in Request(Cost : Dollars), Result(Cost : Dollars);

out Schedule(Cost : Dollars), Remit(Change : Dollars);

behavior
Payment : var Dollars := 0;

begin
(?X : Dollars)Request(?X) ||> Payment := 7X; Schedule(?X);;
(?X : Dollars)Result(?X) ||> Remit($Payment - 7X);;

end;

architecture gas_station() return root

is

0 : Operator;

P : Pump;

Ci, C2 : Customer;
connect

(?C : Customer; 7X : Dollars) 7C.PrePay(?X) ||> 0.Request(?X);

(?X : Dollars) 0.Schedule(?X) ||> P.Activate(?X);
(?X : Dollars) 0.Schedule(?X) |I[> C1.0kay;

(?C : Customer) ?C.Turn_On ||> P.On;

(?C : Customer) 7?C.Turn 0ff ||> P.0ff;

(?X : Gallons; ?Y : Dollars)P.Report(?X, ?Y) ||> 0.Result(?Y);

end gas_station;

Figure 2: Rapide Specification of the Gas Station Architecture.

?X;

In Use;;



actions, which specify the component’s ability to observe or generate particular events. Implicitly
declared actions represent events generated in the environment of the system that are watched
for in an interface. The event start of the customer interface in Figure 2 is an example of an
implicitly declared action. A behavior section, which may contain local declarations, describes
how the component reacts to observed events and generates events associated with an out action.
Behaviors are defined in an event pattern language. Patterns are sets of events together with their
partial ordering, which is represented by a so-called poset.

Component types are instantiated and then connected to form architectures. The architecture
declaration at the bottom of Figure 2 instantiates one operator, one pump, and two customers. The
semantics of connections between architectural elements are specified through rules. Connection
rules have a trigger, an operator, and a body. Rapide uses four kinds of connections in connection
rules. The only one of concern for our example here is the agent connection (written syntacti-
cally as “|[>”). In an agent connection, the observation of the pattern described in the trigger
asynchronously generates the events in the body.

The behavior section of an interface contains state transition rules that are similar in structure
to connection rules. Thus, a transition rule is composed of a trigger, an operator, and a body. The
agent operations described above are also used as operators in the transition rules. The trigger
may be a pattern or a boolean expression, while the body may be a state assignment or it may
generate a poset. Conceptually, when the appropriate pattern of events occurs, the events in the
body of the rule are triggered. In the gas station example, the body of behaviors are either state
assignments or simply the generation of a single event.

Rapide provides placeholders for use in patterns and expressions. These are designated with the
symbol “?”. Placeholders are used in comparisons, dynamic generation of components, as iterators,
or to bind the values of parameters. In the case of dynamic creation of components, a placeholder
serves as a universal quantifier. For instance, in the gas station example

(?C : Customer; 7X : Dollars) ?C.Pre_Pay(?X) | 1> O.Request(?X);

is interpreted to mean that “for any component of type customer, there is to be an agent connection
between the customer’s Pre_Pay action and the operator’s Request action, where the number of
dollars in the Request action is bound to the number of dollars in the Pre Pay action”.

2.3 Architecture-Level Dependence Analysis

If a system’s architectural description is available early in the development process, then it provides
a basis from which to reason about the system before effort is expended on later development phases
and artifacts. If a precise mapping is maintained between the architectural description and the
implementation, then the high-level nature of the architectural description can provide a reliable
abstract basis upon which to perform tractable analyses of the implementation.

The degree to which both early and high-level analyses based on architectural descriptions pro-
vide benefit depends directly on the sophistication of the language used to capture the architecture.
Dependence analysis can be applied to simple “box and arrow” diagrams of software architectures,
but can then yield only coarse-grained information about structural system properties. This is
illustrated in Figure 3, which shows the four components of the gas station architecture and the
relationships among those components based on the specified connections among named ports. By
itself, the interconnection structure offers only a gross understanding of architectural dependencies.
In general, when performing a transitive closure over the connections in such a description, one
is likely to end up encountering all the components in the architecture. Conversely, dependence
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Figure 3: Intercomponent View of Gas Station Dependencies.

analysis applied to descriptions that include detailed behavioral information about component in-
teractions have the potential to yield correspondingly detailed results. Figure 4 shows a view the
gas station architecture of Figure 3 enhanced by an analysis of intracomponent pathways.

In the established formulation of dependence at the implementation level, the two major contrib-
utors to dependencies are control and data. In that context, a control flow graph (CFG) is normally
used as the basis for calculating the dependencies. A CFG is a directed graph in which the ver-
tices represent program elements (usually statements or basic blocks) and the arcs represent the
potential for control to flow from the arc’s source to the arc’s target. Typically, the vertices of the
CFG are annotated with information about the definition and use of variables in the program. This
combination of control and data information is then used to identify control and data dependencies
among the program statements. The program dependence graph (PDG) [8, 28] combines control
and data dependence information into a single, compact representation. A dependence between
two vertices in a PDG is classified as indirect when the dependence relationship exists transitively
through intermediate vertices. If the relationship does not involve transitive dependencies, then it
is said to be a direct dependence.

The realm of architectural description also involves both control and data relationships, and here
too we can base the analysis on some sort of representation of control. But the nature of control in
ADLs is quite different from that of control in the languages that, to date, have been the targets of
dependence analysis. In particular, modern-day ADLs such as Rapide and Wright are event based,
which has the following implications: (1) unlike synchronous procedure call or task rendezvous,
event interactions are asynchronous and events may or may not be received and (2) unlike the
simple conditional statements that govern procedure invocation, complex event patterns can be
used to constrain when a port may be stimulated. While these characteristics could be achieved
through explicit programming in traditional analysis targets (e.g., C, C++, and Ada), the fact that
they are first-class semantic concepts in ADLs makes them important objects of analysis.

The key to architectural dependence analysis lies in determining ways to minimize the set of
potential dependencies. One approach is to create a representation of the direct intercomponent
dependencies, and then refine this by including summarizations of intracomponent dependencies,
thereby limiting the number of potential pathways among the in and out ports within a component.
The results of such an approach are reflected in Figure 4. For example, the analysis reveals that a
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Figure 4: Enhanced View of Gas Station Dependencies.

response through component C1’s out port Pre_Pay implies a stimulus through its in port Start and
not through either of its in ports Okay or Change, a fact not discernible from Figure 3. There are
also a number of critical anomalies evident only from the analysis result depicted in Figure 4, which
we discuss below. The ability to specify intracomponent interface behavior is a key distinguishing
feature of modern-day ADLs. Furthermore, the constraints on component interactions imposed by
event patterns introduce additional opportunities to explore ways in which to refine the analysis of
event-based interactions.

3 A Prototype Architecture-Level Dependence Analysis Tool

Aladdin is a prototype tool for performing architecture-level dependence analysis. The main window
of its user interface is shown to the left in Figure 5. The purpose of using Aladdin is to obtain
information that can be used to study the dependence relationships among ports of an architecture
as an aid to answering questions such as those listed in Section 1. For instance, in the gas station
architecture described in Section 2.2, Aladdin exposes the existence of unused ports, helps locate
specification coding errors, and supports investigation of how the replacement of a component
would affect the rest of the system.

Aladdin takes architectural descriptions as inputs and, in response to queries by a user, produces
a chain of direct dependencies rooted at a specified port in the architecture. Aladdin uses a two-
phase algorithm to identify dependence chains. In Phase I, Aladdin computes and records all
potential direct dependencies. Phase II is executed in response to a user request for the dependencies
that are related, either directly or indirectly, to a specific port. The user does this through the
interface shown in the center of Figure 5. The output of Phase II is a dependence chain such as
the one shown to the right in Figure 5.

Aladdin has been carefully designed to separate language-specific processing tasks from
language-independent analysis tasks, and so can be tailored for use with other languages. For
example, besides its use with Rapide, Aladdin has also been made to work with Acme [9]. An
abstract syntax tree (AST) representation of an architectural specification is translated into a de-
pendence table that is used to compute indirect dependencies. The portion of Aladdin that builds
the ASTs for the Rapide and Acme variants were obtained from the Rapide Design Team at Stan-
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Figure 5: Screen Shot of Aladdin in Use.

ford University and the Acme research group at Carnegie Mellon University, respectively, and then
directly incorporated into Aladdin. In the future, we expect to obtain other such ADL front ends
in order to provide dependence analysis for a variety of languages.

In the remainder of this section we detail the generation of an Aladdin dependence table and
our use of Aladdin to analyze the Rapide specification for the gas station architecture shown in
Figure 2.

3.1 Construction of the Dependence Table

For a given ADL, it is necessary to understand the various ways in which any two architectural
elements can be related so that a dependence table for a particular architecture can be constructed.
This tabular representation could alternatively be viewed as a dependence graph. In a Rapide
description, the relationship types associated with connection and transition rule operators induce
dependence relationships. The table shown in Figure 6 represents the dependence relationships of
the gas station example. Notice that this table captures the relationships depicted in Figure 4.

A dependence table has m rows and n columns, where m is the number of ports in the archi-
tecture plus any implicitly declared interactions with the environment (e.g., the action start), and
n is the number of ports in the architecture plus any emissions to the environment. A cell in the
dependence table represents the presence or absence of a dependence relationship between the pairs
of architectural elements that define the column and row in which the cell resides. The columns
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in the table represent the dependent in the relationship and the rows represent the source of the
dependence. For instance, if a is dependent on b, then the cell at column a and row b details that
relationship.

In the case of the gas station architecture of Figure 2, there is an agent connection between
the Turn On action for each customer and the On action of the pump, where the On action is the
body, and thus the dependent. Therefore, this connection is mapped to a causal relationship and
is recorded in the table cells (C1.T_On,P.On) and (C2.T_On,P.On) in Figure 6.

While composite event patterns in triggers and bodies of rules can be complex, they do not need
to add complexity to the tabular representation. This is because, in general, there is no way to
statically determine which of the events associated with actions in the trigger will be the cause of a
given triggering. Thus, all are recorded as sources for the relationship. For example, in the last rule
of the behavior section of the Pump interface of the gas station example shown in Figure 2, either the
event 0ff or the internally generated event Done can stimulate the generation of a report. Actions
On and Activate are the only possible external events associated with stimulation of Done so the
syntax of this rule results in Report being identified as being dependent on On and Activate, as
well as on Off. This is a conservative approach and we are investigating methods for reducing the
generation of false dependencies based on the semantics of the pattern language used by Rapide.

3.2 Summarizing Internal Behavior

The local declaration of variables and actions in the behavior section of a Rapide component
interface specification may be involved in the eventual connection of an in port to an out port.
However, the details of this internally generated behavior is below the level of abstraction that is
of interest to us for building dependence chains. Thus, Aladdin applies a summarization algorithm
in order to safely abstract away these low-level details. In the gas station example, the pump has
several local declarations; Aladdin summarizes the effects of their inclusion, thus producing the
intracomponent pathways shown in Figure 4.

The most conservative approach to identifying dependencies between in and out ports of a
component is to assume that each in port has the potential to affect each out port. This is equivalent
to viewing the component as a black box. It is often the case that we can be more precise than
that by performing intracomponent analysis and identifying the potential pathways from in ports
to out ports. This approach, however, requires that an expensive analysis be performed. As a
compromise, we have developed a summarization algorithm that allows us to reduce the number of
intracomponent connections.

As an example of an opportunity to apply our scheme, consider the behavior associated with
the Pump interface in the gas station example. This interface contains the internal actions In use
and Done. These actions are used to describe the transformational behavior of a Pump component.
The first rule in the behavior section can be read roughly as follows. When both On and Activate
events are observed and the variable Free is “true”, then do the following sequence of things: set
the variable Free to “false”, set the variable Limit to the value of the input parameter Cost, and
then emit the signal that the pump is In use. The double semicolon signifies the end of a sequence
of actions. The action In_use is an internal action and, therefore, its occurrence is only observed
within the scope of Pump. When In use is observed, then the internal variable Reading is set to
the value of Limit and the internal action Done signals the completion of pumping. Once this
event is observed the value of the variable Free is set back to “true” and a report is generated that
contains the value of the variable Reading. The trigger for Report reveals an alternative stimulus
for generation of a report. If the external event 0Off is observed at any time before the internal
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Begin SUMMARIZE(out_port)
src_ports[] = GET_SRC_PORTS(out_port)
loop for each src_port in src_ports[]
if src_port is an in port
then CREATE_LINK(src_port, target_port)
else if src_port is an internal port
in_ports[] = GET_IN_PORTS (component)
for each in port in in_ports[]
rels[] = GET_CELL()
for each rel in rels[]
if rel.src = in_port and
rel.target is an internal port
CREATE_LINK(rel,target_port)
endif
endfor
endfor
endif
endloop
End SUMMARIZE

Figure 7: Internal Behavior Summarization Algorithm.

event Done, then a report is generated with the current value of the variable Reading, which will be
equal to $0 unless pumping was completed, in which case it would be equal to the value of Limit.

The basis for our approach to summarization lies in the fact that events can be either internally
or externally visible, but we do not want to concern ourselves with the internal events. So we ask
ourselves how can we ignore internal events and still gain some benefit from the fact that they
contribute to the creation of intracomponent pathways? The answer to this question leads to an
elegant summarization algorithm, presented in Figure 7, that can result in significant reductions in
the numbers of identified intracomponent pathways, depending on the transformational relation-
ships within the component. While the gas station example provides an opportunity to describe the
intuition behind the algorithm, the behavior associated with its components is such that there is
no gain in reduction of intracomponent pathways. However, the benefit of lowered cost of analysis
is realized.

The intuition behind our algorithm is based on the following observations. If an internal port
is being used as a stimulant, then it must appear in the body of some other transition rule. The
trigger of that rule must contain an in and/or another internal action. In either case, the internal
action must be the target of stimulation originating at some external in action. Therefore, links
are constructed between each in port associated with an event that directly stimulates any internal
event and, additionally, all out actions associated with events that are directly stimulated by internal
events. This algorithm is conservative and may, in fact, result in the creation of several false links.
As mentioned in Section 2, we are investigating means to exploit patterns used as constraints,
triggers, and guards on transitions in order to improve this summarization algorithm as well as to
develop other means for improving the precision of chains.

3.3 Creating Chains of Dependencies

Figure 6 is the result of the Aladdin table builder processing the Rapide specification for the
gas station example. Once this representation is available, Aladdin builds dependence chains in

11



response to user queries. Building dependence chains that capture how one component affects
another component involves creating links by beginning at the row labels and locating the related
column label, whereas building dependence chains that capture how one component is affected by
another component involves linking in reverse, from column to row labels.

Consider a query to uncover the cause of the P.Activate event in the gas station example.
The transitive closure that constructs an affected-by chain of events begins at the columns and
looks to the related events in the rows. The 0.Schedule event is the only possible source of
the P.Activate event. This relationship is transitive and, assuming that all possible prior events
occurred, we repeat the process for each of the related events. In this case, only the 0.Schedule
event is directly caused by 0.Request, which is generated by any one or both of the C1.Pre Pay
or C2.Pre_Pay events, which in turn may only be preceded by the start event of the Customer
interface.

Construction of an affects chain that has the 0.Schedule action as its first link begins by
checking the cells that have entries in the 0.Schedule row. The P.Activate and C1.0kay are the
only columns that have entries for this row. These relationships are also transitive, so the chain is
constructed in a similar, though reversed manner, to the affected-by chain.

3.4 Using Aladdin

The Query function of Aladdin is accessible by way of the interface shown in the center of Figure 5.
This interface can be used to access the following information about the various ports appearing
in an architectural description.

e ports with no destination;

e ports with no source;

e ports directly related to a particular port;

e ports indirectly affected by a particular port;

e ports indirectly affecting on a particular port;

e ports indirectly related to a particular port; and

e cycles involving a particular port.

Figure 8 shows the results of running the first two kinds of queries against the gas station speci-
fication. The circles in the figure indicate the anomalies that were revealed by these analyses. Of
course, only the engineer can determine whether these anomalies are actual faults in the specifica-
tion. For instance, it is possible that an unused event has been included in an interface because it
is expected to be needed in the future, not because it is a misconnection.

The architectural description for the gas station contains a serious error. In particular, it is never
possible for the second customer to pump gas. The first customer does not suffer this problem. So,
after this problem is discovered through simulation of the architecture, the engineer uses Aladdin
to query for the events that could lead to the P.0n event. The resulting chain is shown in Figure 9
by highlighting the relevant dependence relationships. The actual output from Aladdin is given
in the window shown to the left in Figure 5. The chain reveals that when the second customer
pays for gas, the first customer is given credit and could pump again if still in the gas station,
while the second customer is never given the okay to pump. That is, the chain back through the
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Figure 9: Gas Station Fault Localization.

C2.0kay event does not lead to a legal start state for the system. Additionally, by comparing the
two subchains, we can see that the C1.0kay event is generated no matter who paid for the gas.

With this information in hand, the engineer can examine the architectural specification in
Figure 2, look at the connections involving the scheduling of customers, and find that C1 is the only
customer that receives the Schedule event from the operator. The information tells the engineer
that there is a fault in the connection based on the 0.Schedule action in the architecture; the fault
is then repaired.

This simple example already demonstrates the leverage that architecture-level dependence anal-
ysis can give to an engineer. The analysis can be performed early in the life cycle and helps to
reveal a significant fault in the system. One would expect additional errors to be introduced as the
system is refined and implemented. Thus, detection and correction of errors during the first stages
of development produce overall savings in development costs.
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4 Related Research

The work described in this paper builds on prior work in three primary areas: traditional depen-
dence analysis, novel approaches to slicing, and applications of static concurrency analysis tools to
architecture descriptions.

Considerable work has been done in the study and use of dependence relationships among
variables and statements at the implementation level. For example, Ferrante, Ottenstein, and War-
ren [8] introduced the program dependence graph for use in compiler optimization. Podgurski and
Clarke [28] proved that the combination of data and control dependencies produces a conserva-
tive set of behavioral dependencies. Others have focused on problems associated with procedure
calls, variable aliases, and concurrency-related control mechanisms [6, 12, 13, 15, 18, 19]. Re-
cently, work has been directed at improving the precision and efficiency of program dependence
analysis [31, 32, 35].

Our notion of dependence chaining is intended to support a range of analysis applications,
including what would amount to an architectural slice. Program slicing was originally introduced
by Weiser [38] as an aid to program debugging. Sloane and Holdsworth [33] suggest generalizing
the concept of program slicing and show the potential in syntax-based slicing of non-imperative
programs.

Recent work in program slicing has focused on using slices to improve the efficiency of model
checking. Two such approaches explore slicing of programs written in VHDL [7] and Promela [23].
The concurrency model of these languages closely resemble that found in ADLs such as Rapide and
Wright. The approach taken in each case is to interpret a reduced set of the concurrency-related
control constructs of the language in terms of sequential program constructs, representing them in
the system dependence graph of Horwitz et al. [15]. While these approaches produce a large number
of false dependencies, the results have proven useful for their intended purpose of improving the
efficiency of model checking.

Zhao [39] describes an approach to slicing architectural descriptions written in Wright for the
purposes of identifying reusable subarchitectures. The work he describes is similar in nature to our
work, but details of the method for determining related components are unstated.

Naumovich et al. [25] apply INCA and FLAVERS, two static concurrency analysis tools used for
proving behavioral properties of concurrent programs, to an Ada translation of a description of the
gas station problem that was written in the Wright ADL. Their approach is to create a concurrent
program that can simulate the intended concurrent behavior of the system. Our work is aimed at
developing general dependence analysis techniques that may contribute to the enhancement of the
analyses already provided by these tools.

5 Conclusion

In this paper we have introduced the general challenges of performing dependence analyses on
software architecture descriptions, and presented a dependence analysis technique that we developed
as a vehicle for exploring these challenges. We have demonstrated the technique through an example
application of a prototype tool, Aladdin, that provides automated support for reasoning about the
dependence relationships among the components of a system described in a modern-day architecture
description language. The example illustrates the important leverage that software developers can
gain from the effort they must expend in documenting a system’s architecture in a formal notation.

In addition to the benefits discussed in this paper, software architecture descriptions have further
promise in decreasing the cost and improving the quality of software development. Yet, before these

14



benefits can be realized, there must be additional research carried out. Below we identify several
such areas of research, going beyond only those to support dependence analysis.

e Automated analysis requires that developers provide some form of machine-processable de-
scription of the software architecture. Therefore, development environments that support
compilation and simulation of architectural descriptions need to be made available. The tool
set supporting Rapide is an early example of such an environment.

e Automated analysis techniques similar to those available to programmers will need to be
developed for machine-processable ADLs. We have described one such technique in this paper,
and mentioned others concerned with establishing correctness. Other types of analyses, such
as performance analysis [4, 34], would also be useful, and would provide further incentive to
developers to expend the effort to create formal descriptions.

e Methods for avoiding, or recovering from, architectural drift [27] need to be developed. Ar-
chitectural drift is the widely recognized phenomenon in which the embodiment of an archi-
tecture tends to vary from its original form over time. Architecture-based analyses are useful
only in as much as an implementation reflects the structural and behavioral properties of the
architectural description that might be used as the basis for analysis.

¢ Developing automated techniques for mapping between various architectural views would
improve the extent to which one can reason about the impact of making a change to some
artifact of the development process, be that a software artifact or a workflow artifact. For
instance, if a deadline is approaching and a developer wants to stall development of a specific
component, the full impact of this decision can be assessed by analyzing a combination of an
architectural view of work assignments and the structure of the software.

e Given mappings among architectural views, an algebra for reasoning about the relationships
associated with various architectural views would support definition of extended notions of
dependencies among artifacts associated with software development.

Advances in any of the areas listed above would increase the applicability and utility of software
architecture analysis in general, and architecture-level dependence analysis in particular.
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